On Equivalence of Quantum Liouville Equation And Metric Compatibility Condition, A Ricci Flow Approach
نویسنده
چکیده
In this paper after introducing a model of binary data matrix for physical measurements of an evolving system (of particles), we develop a Hilbert space as an ambient space to derive induced metric tensor on embedded parametric manifold identified by associated joint probabilities of particles observables (parameters). Parameter manifold assumed as space-like hypersurface evolving along time axis, an approach that resembles 3+1 formalism of ADM and numerical relativity. We show the relation of endowed metric with related density matrix. Identification of system density matrix by this metric tensor, leads to the equivalence of quantum Liouville equation and metric compatibility condition ∇ = 0 while covariant derivative of metric tensor has been calculated respect to Wick rotated time coordinate. After deriving a formula for expected energy of the particles and imposing the normalized Ricci flow as governing dynamics, we prove the equality of this expected energy with local scalar curvature of related manifold. Consistency of these results with Einstein tensor, field equations and Einstein-Hilbert action has been verified. Given examples clarify the compatibility of the results with well-known principles. This model provides a background for geometrization of quantum mechanics compatible with curved manifolds and information geometry.
منابع مشابه
On quasi-Einstein Finsler spaces
The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces. Quasi-Einstein metrics serve also as solution to the Ricci flow equation. Here, the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined. In compact case, it is proved that the quasi-Einstein met...
متن کاملGEOMETRIZATION OF HEAT FLOW ON VOLUMETRICALLY ISOTHERMAL MANIFOLDS VIA THE RICCI FLOW
The present article serves the purpose of pursuing Geometrization of heat flow on volumetrically isothermal manifold by means of RF approach. In this article, we have analyzed the evolution of heat equation in a 3-dimensional smooth isothermal manifold bearing characteristics of Riemannian manifold and fundamental properties of thermodynamic systems. By making use of the notions of various curva...
متن کاملOn Perelman’s functional with curvature corrections
In recent ten years, there has been much concentration and increased research activities on Hamilton’s Ricci flow evolving on a Riemannian metric and Perelman’s functional. In this paper, we extend Perelman’s functional approach to include logarithmic curvature corrections induced by quantum effects. Many interesting consequences are revealed. During the last decades, there has been more attent...
متن کاملHeat flow and calculus on metric measure spaces with Ricci curvature bounded below - the compact case
We provide a quick overview of various calculus tools and of the main results concerning the heat flow on compact metric measure spaces, with applications to spaces with lower Ricci curvature bounds. Topics include the Hopf-Lax semigroup and the Hamilton-Jacobi equation in metric spaces, a new approach to differentiation and to the theory of Sobolev spaces over metric measure spaces, the equiva...
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کامل